public class LinearRegression extends Predictor<FeaturesType,Learner,M> implements Logging
The learning objective is to minimize the squared error, with regularization. The specific squared error loss function used is: L = 1/2n ||A weights - y||^2^
This support multiple types of regularization: - none (a.k.a. ordinary least squares) - L2 (ridge regression) - L1 (Lasso) - L2 + L1 (elastic net)
| Constructor and Description |
|---|
LinearRegression() |
LinearRegression(java.lang.String uid) |
| Modifier and Type | Method and Description |
|---|---|
LinearRegression |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
LinearRegression |
setElasticNetParam(double value)
Set the ElasticNet mixing parameter.
|
LinearRegression |
setFitIntercept(boolean value)
Set if we should fit the intercept
Default is true.
|
LinearRegression |
setMaxIter(int value)
Set the maximum number of iterations.
|
LinearRegression |
setRegParam(double value)
Set the regularization parameter.
|
LinearRegression |
setStandardization(boolean value)
Whether to standardize the training features before fitting the model.
|
LinearRegression |
setTol(double value)
Set the convergence tolerance of iterations.
|
protected LinearRegressionModel |
train(DataFrame dataset)
Train a model using the given dataset and parameters.
|
java.lang.String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
extractLabeledPoints, fit, setFeaturesCol, setLabelCol, setPredictionCol, transformSchematransformSchemaclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitinitializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParamstoStringpublic LinearRegression(java.lang.String uid)
public LinearRegression()
public java.lang.String uid()
Identifiableuid in interface Identifiablepublic LinearRegression setRegParam(double value)
value - (undocumented)public LinearRegression setFitIntercept(boolean value)
value - (undocumented)public LinearRegression setStandardization(boolean value)
value - (undocumented)public LinearRegression setElasticNetParam(double value)
value - (undocumented)public LinearRegression setMaxIter(int value)
value - (undocumented)public LinearRegression setTol(double value)
value - (undocumented)protected LinearRegressionModel train(DataFrame dataset)
Predictorfit() to avoid dealing with schema validation
and copying parameters into the model.
train in class Predictor<Vector,LinearRegression,LinearRegressionModel>dataset - Training datasetpublic LinearRegression copy(ParamMap extra)
Paramscopy in interface Paramscopy in class Predictor<Vector,LinearRegression,LinearRegressionModel>extra - (undocumented)defaultCopy()public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema - input schemafitting - whether this is in fittingfeaturesDataType - SQL DataType for FeaturesType.
E.g., VectorUDT for vector features.